1.汽车发动机电控系统的三大控制目标

汽车发动机电控技术原理与维修答案_汽车发动机电控技术

发动机电子控制系统(EECS)是通过对发动机点火、喷油、空气与燃油的比率、排放废气等进行电子控制,使发动机在最佳工况状态下工作,以达到提高其整车性能、节约能源、降低废气排放的目的。

1.电控点火装置(ESA)

电控点火装置由微处理机、传感器及其接口、执行器等构成。该装置根据传感器测得的发动机参数进行运算、判断,然后进行点火时刻的调节,可使发动机在不同转速和进气量等条件下,保证在最佳点火提前角下工作,使发动机输出最大的功率和转矩,降低油耗和排放,节约燃料,减少空气污染。

2.电控燃油喷射(EFI)

控燃油喷射装置因其性能优越而逐渐取代了机械式或机电混合式燃油喷射系统。当发动机工作时,该装置根据各传感器测得的空气流量、进气温度、发动机转速及工作温度等参数,按预先编制的程序进行运算后与内存中预先存储的最佳工况时的供油控制参数进行比较和判断,适时调整供油量,保证发动机始终在最佳状态下工作,使其在输出一定功率的条件下,发动机的综合性能得到提高。

3.废气再循环控制(EGR)

废气再循环控制系统是目前用于降低废气中氧化氮排放的一种有效措施。其主要执行元件是数控式EGR阀,作用是独立地对再循环到发动机的废气量进行准确的控制。 底盘综合控制系统包括电控自动变速器、防抱死制动系统(ABS)与驱动防滑系统(ASR)、电子转向助力系统(EPS)、自适应悬挂系统(ASS)、巡行控制系统(CCS)等。

1.电控自动变速器(ECAT)

一般来说,汽车驱动轮所需的转速和转矩,与发动机所能提供的转速和转矩有较大差别,因而需要传动系统来改变从发动机到驱动轮之间的传动比,将发动机的动力传至驱动轮,以便能够适应外界负载与道路条件变化的需要。此外,停车、倒车等也靠传动系统来实现,适时地协调发动机与传动系统的工作状况,充分地发挥动力传动系统的潜力,使其达到最佳的匹配,这是变速控制系统的根本任务。ECAT可以根据发动机的载荷、转速、车速、制动器工作状态及驾驶员所控制的各种参数,经计算、判断后自动地改变变速杆的位置,按照换档特性精确地控制变速比,从而实现变速器换挡的最佳控制,得到最佳挡位和最佳换挡时间。该装置具有传动效率高、低油耗、换档舒适性好、行驶平稳性好以及变速器使用寿命长等优点。用电子技术特别是微电子技术控制变速系统,已经成为当前汽车实现自动变速功能的主要方法。

2.防抱死制动系统(ABS)与驱动防滑系统(ASR)

汽车防抱死制动系统可以感知制动轮每一瞬时的运动状态,通过控制防止汽车制动时车轮的抱死来保证车轮与地面达到最佳滑动率,从而使汽车在各种路面上制动时,车轮与地面都能达到纵向的峰值附着系数和较大的侧向附着系数,以保证车辆制动时不发生抱死拖滑、失去转向能力等不安全的因素,可使汽车在制动时维持方向稳定性和缩短制动距离,有效地提高了行车的安全性。它是应用在汽车安全上的最有价值的一项应用。

3.电子转向助力系统(EPS)

电子转向助力系统用电动机与电子控制技术对转向进行控制,利用电动机产生的动力协助驾车者进行动力转向,系统不直接消耗发动机的动力。EPS一般是由转矩(转向)传感器、电子控制单元、电动机、减速器、机械转向器以及蓄电池电源等构成。汽车在转向时,转矩(转向)传感器会感知转向盘的力矩和拟转动的方向,这些信号会通过数据总线发给电控单元,电控单元会根据传动力矩、拟转的方向等数据信号,向电动机控制器发出动作指令,电动机就会根据具体的需要输出相应大小的转动力矩,从而产生了助力转向。如果不转向,则本套系统就不工作,处于待调用状态。电子转向助力系统提高了汽车的转向能力和转向响应特性,增加了汽车低速时的机动性以及调整行驶时的稳定性。目前国内中高档轿车应用助力转向较多。

4.自适应悬挂系统(ASS)

自适应悬挂系统能根据悬挂装置的瞬时负荷,自动、适时地调整悬挂的阻尼特性及悬架弹簧的刚度,以适应瞬时负荷,保持悬挂的既定高度,极大地提高了车辆行驶的稳定性、操纵性和乘坐的舒适性。

5.巡行控制系统(CCS)

巡航控制又称恒速行驶系统是让驾驶员无需操作油门踏板就能保证汽车以某一固定的预选车速行驶的控制系统。 信息通讯系统包括汽车导航与定位系统、语音系统、信息系统、通信系统等。

1.汽车导航系统与定位系统(NTIS)

该系统可在城市或公路网范围内,定向选择最佳行驶路线,并能在屏幕上显示地图,表示汽车行驶中的位置,以及到达目的地的方向和距离。这实质是汽车行驶向智能化发展的方向,再进一步就可成为无人驾驶汽车。

汽车发动机电控系统的三大控制目标

60年代初,人们开始对汽车发动机周围零部件的电子化进行研究。首先使电压调节器及点火装置电子化。1960年,美国通用汽车公司(GM)开始用is电子调节器,并于1967年以后在所有车中都换用IC电子调节器。13年,美国通用汽车公司开始用此电子点火装置,并逐渐普及使用。14年起、通用公司开始装备加大火花塞电极间隙、增强点火能量的高能点火系统,并且力图将分电器、点火线圈和电子控制电路制成为一体。真正的电子控制点火系是由美国克莱斯勒汽车公司首创于16年,称为电子式稀混合燃烧系统(ELBS),它根据进气温度、冷却水温、转速、负荷等由控制器(微型计算机)计算出最佳点火时刻,指令点火。

17年,美国通用公司推出最早的数字控制点火系统,称为迈塞(MISA)R微机点火和自动调节系统。福特公司则首先开发了同时控制点火时刻,废气再循环和二次空

气的发动机电子控制系统。

电子燃油喷射的最初设想是在波士(Bosch)公司于1952年成功地将汽油机实现了直接喷射后,1957年由奔迪(Bendix)公司始创,而真正批量实现产品是1967年波士公司的D型燃油喷射装置,它根据进气歧管压力控制燃油喷射。为解决D型喷射装置存在的系统精度稍低,排放难以控制的问题,12年波士公司便推出了L型燃油喷射装置,它直接测量进气量以控制燃油喷射。80 年 代 初,根据节气门开度和曲轴转速确定喷射的M型燃油喷射装置问世。之后,电子燃油喷射系统在全世界逐步推广和发展。

随着单片机技术的发展,出现了16位单片机,使得单一功能的控制技术被整机集中控制取代,同时实现优化的点火正时和精确的空燃比控制。如:日本日产汽车公司开发了能综合控制喷油、点火时刻、废气再循环、空燃比和怠速,并具有自我诊断功能的综合控制系统。

80 年 代 后期,高性能的16位单片机出现(如MCS一96),它适用于在更加复杂的实时处理系统中。高性能16位单片机丰富的软硬件和强大的性能可以使发动机的控制策略更加丰富和完善,特别是增强了系统的自学习、故障诊断及失效保护等方面。

90 年 代 ,23位单片机开始逐步得到应用,硬件上还用了可编程逻辑阵列,数字信号处理DSP技术,微处理器芯片大规模集成化等电子技术。硬件功能的培强使得控制向整车方向发展,如Buick轿车用了多种电子控制系统:动力总成(含发动机和变速箱)控制系统PCM、防抱死制动与牵引力控制系统EBC/EBTCM、安全气囊系统SIR、车身控制系统BCM等,其中PCM用无分电器点火系统DSI和进气道多点顺序喷射系统。发动机控制包括:空燃比、燃油蒸发净化EVAP、怠速、排气再循环EGR、冷却风扇,空调离合器、点火提前角和点火闭合期。变速控制包括自动换挡等。

在应用单片机的电子控制装置中,控制程序被存储在微处理器或外部存储器的ROM、EPROM、EEPROM中.程序语言卞要用汇编语言。在发 动 机 的控制理论方面,发动机的控制从以传统的查表法和PID控制方法向最优控制、自适应控制以及神经网路控制、模糊控制等现代控制理论方向发展,智能控制在发动机控制中的应用成为现在的一个研究热点。但目前,这些新的控制方法在成熟的产品中还不多见。

电控发动机与化油器式发动机最大的不同在燃油供给系。电控发动机的燃油供给系取消了化油器,却增加了不少电子自动控制装置。其中包括许多传感器,执行元件和ECU。

电控发动机不仅要完成化油器所要完成的任务,而且要完成化油器难以完成的任务。例如,使可燃混合气的空燃比浓度能控制在所需要的范围内。化油器式发动机油路和电路划分的非常清楚,互相影响不大。而电控发动机燃油供给系统增加了电子控制部分,这就使得油路和电路相互联系,它不仅影响发动机燃油系的工作,而且还影响发动机的正常运行。由于电控发动机电子控制装置的增加,这就使发动机的整个结构(包括电控系)更为复杂。

快速

导航

结构组成

工作原理

待测参数

优点

基本思想

在初期,是以电子技术替代机械控制技术实现系统的功能,并对其功能进行扩展,使性能得到大幅度提高;发展到一定程度后,电子技术可以促使系统原理发生本质变化,从而可以突破局限,使发动机性能得以大幅度提高。

电控发动机

结构组成

电子控制单元

电控单元(ECU)是发动机电子控制系统的核心。它完成发动机各种参数的集和喷油量、喷油定时的控制,决定整个电控系统的功能。

传感器

传感器(Sensor)将发动机工况与环境的信息通过各种信号即时、真实的传递到ECU。

换句话说,ECU所了解到的只是一个由诸多信号所构成的发动机。所以,传感器信息的准确性、再现性与即时性就直接决定控制的好坏。

执行器

电控系统要完成的各种控制功能,是靠各种执行器来实现的。

在控制过程中,执行器将ECU传来的控制信号转换成某种机械运动或电器的运动,从而引起发动机运行参数的改变,完成控制功能。

工作原理

以发动机转速和负荷作为反映发动机实际工况的基本信号,参照由试验得出的发动机各工况相对应的喷油量和喷油定时脉谱图来确定基本的喷油量和喷油定时,然后根据各种因素(如水温、油温、、大气压力等)对其进行各种补偿,从而得到最佳的喷油量和喷油正时或点火定时,然后通过执行器进行控制输出。